

NALLA NARASIMHA REDDY EDUCATION SOCIETY'S GROUP OF INSTITUTIONS (UGC AUTONOMOUS INSTITUTION)

B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING List of Open Electives (R21) Applicable From 2021-22 Admitted Batch

III Year II Semester Open Elective (OE - I)

21EC600OE Fundamentals of Internet of Things

IV Year I Semester Open Elective (OE - II)

21EC700OE Electronic Sensors

IV Year II Semester Open Elective (OE – III)

21EC800OE Measuring Instruments

21EC600OE: FUNDAMENTALS OF INTERNET OF THINGS (Open Elective – I)B.Tech. III Year II SemL T P C3 0 0 3

Course Objectives: The objectives of the course are to:

- 1. Understand the concepts of Internet of Things and able to build IoT applications
- 2. Learn the programming and use of Arduino and Raspberry Pi boards.
- 3. Known about data handling and analytics in SDN.

Course Outcomes: Upon completing this course, the student will be able to

- 1. Known basic protocols in sensor networks.
- 2. Program and configure Arduino boards for various designs.
- 3. Python programming and interfacing for Raspberry Pi.
- 4. Design IoT applications in different domains.

UNIT - I

Introduction to Internet of Things, Characteristics of IoT, Physical design of IoT, Functional blocks of IoT, Sensing, Actuation, Basics of Networking, Communication Protocols, Sensor Networks.

UNIT - II

Machine-to-Machine Communications, Difference between IoT and M2M, Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino.

UNIT - III

Introduction to Python programming, Introduction to Raspberry Pi, Interfacing Raspberry Pi with basic peripherals, Implementation of IoT with Raspberry Pi

UNIT - IV

Implementation of IoT with Raspberry Pi, Introduction to Software defined Network (SDN), SDN for IoT, Data Handling and Analytics.

UNIT - V

Cloud Computing, Sensor-Cloud, Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Industrial IoT.

Case Study: Agriculture, Healthcare, Activity Monitoring

TEXT BOOKS:

- 1. "The Internet 'of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
- 2. "Make sensors": Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.

REFERENCE BOOKS:

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"
- 3. Beginning Sensor networks with Arduino and Raspberry Pi Charles Bell, Apress, 2013

21EC700OE: ELECTRONIC SENSORS (Open Elective - II)B.Tech. IV Year I SemLIT

L T P C 3 0 0 2

Course Objectives:

- 1. Learn the characterization of sensors.
- 2. Known the working of Electromechanical, Thermal, Magnetic and radiation sensors
- 3. Understand the concepts of Electro analytic and smart sensors
- 4. Able to use sensors in different applications

Course Outcomes: Upon completing this course, the student will be able to

- 1. Learn about sensor Principle, Classification and Characterization.
- 2. Explore the working of Electromechanical, Thermal, Magnetic, radiation and Electro analytic sensors
- 3. Understand the basic concepts of Smart Sensors
- 4. Design a system with sensors

UNIT - I

Sensors / **Transducers:** Principles, Classification, Parameters, Characteristics, Environmental Parameters (EP), Characterization

Electromechanical Sensors: Introduction, Resistive Potentiometer, Strain Gauge, Resistance Strain Gauge, Semiconductor Strain Gauges -Inductive Sensors: Sensitivity and Linearity of the Sensor – Types-Capacitive Sensors: Electrostatic Transducer, Force/Stress Sensors Using Quartz Resonators, Ultrasonic Sensors

UNIT - II

Thermal Sensors: Introduction, Gas thermometric Sensors, Thermal Expansion Type Thermometric Sensors, Acoustic Temperature Sensor, Dielectric Constant and Refractive Index thermo sensors, Helium Low Temperature Thermometer, Nuclear Thermometer, Magnetic Thermometer, Resistance Change Type Thermometric Sensors, Thermo emf Sensors, Junction Semiconductor Types, Thermal Radiation Sensors, Quartz Crystal Thermoelectric Sensors, NQR Thermometry, Spectroscopic Thermometry, Noise Thermometry, Heat Flux Sensors

UNIT - III

Magnetic sensors: Introduction, Sensors and the Principles Behind, Magneto-resistive Sensors, Anisotropic Magneto resistive Sensing, Semiconductor Magneto resistors, Hall Effect and Sensors, Inductance and Eddy Current Sensors, Angular/Rotary Movement Transducers, Synchros.

UNIT - IV

Radiation Sensors: Introduction, Basic Characteristics, Types of Photo resistors/ Photo detectors, Xray and Nuclear Radiation Sensors, Fibre Optic Sensors

Electro analytical Sensors: The Electrochemical Cell, The Cell Potential - Standard Hydrogen Electrode (SHE), Liquid Junction and Other Potentials, Polarization, Concentration Polarization, Reference Electrodes, Sensor Electrodes, Electro ceramics in Gas Media.

UNIT - V

Smart Sensors: Introduction, Primary Sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing - Data Communication, Standards for Smart Sensor Interface, the Automation

Sensors –Applications: Introduction, On-board Automobile Sensors (Automotive Sensors), Home Appliance Sensors, Aerospace Sensors, Sensors for Manufacturing –Sensors for environmental Monitoring

TEXT BOOKS:

- 1. "Sensors and Transducers D. Patranabis" –PHI Learning Private Limited., 2003.
- 2. Introduction to sensors- John veteline, aravind raghu, CRC press, 2011

REFERENCE BOOKS:

- 1. Sensors and Actuators, D. Patranabis, 2nd Ed., PHI, 2013.
- 2. Make sensors: Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.
- 3. Sensors handbook- Sabrie soloman, 2nd Ed. TMH, 2009

21EC8000E: MEASURING INSTRUMENTS (Open Elective - III) B.Tech. IV Year II Sem L T P C

L I I C 3 0 0 2

Course Objectives:

- 1. To provide basic knowledge in transduction principles, sensors and transducer technology and measurement systems.
- 2. To provide better familiarity with the concepts of Sensors and Measurements.
- 3. To provide the knowledge of various measurement methods of physical parameters like velocity, acceleration, force, pressure and viscosity.

Course Outcomes: After Completion of the course the student is able to

- 1. Able to identify suitable sensors and transducers for real time applications.
- 2. Able to translate theoretical concepts into working models.
- 3. Able to understand the basic of measuring device and use them in relevant situation.

UNIT - I

Introduction to measurements. Physical measurement. Forms and methods of measurements. Measurement errors. Statistical analysis of measurement data. Probability of errors. Limiting errors. Standards. Definition of standard units. International standards. Primary standards. Secondary standards. Working standards. Voltage standard. Resistance standard. Current standard. Capacitance standard. Time and frequency standards.

UNIT - II

Passive Sensors

Resistive Sensors: Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs), Thermistors, Light-dependent Resistors (LDRs), Resistive Hygrometers, **Capacitive Sensors:** Variable capacitor, Differential capacitor, **Inductive Sensors:** Reluctance variation sensors, Eddy current sensors

UNIT - III

Metrology: Measurement of length – Plainness – Area – Diameter – Roughness – Angle – Comparators – Gauge Blocks. Optical Methods for length and distance measurements. **Velocity and Acceleration Measurement:** Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers- different types, Gyroscopes-applications.

UNIT - IV

Force and Pressure Measurement: Gyroscopic Force Measurement – Vibrating wire Force transducer. Basics of Pressure measurement –Manometer types – Force-Balance and Vibrating Cylinder Transducers – High- and Low-Pressure measurement

UNIT - V

Flow, Density and Viscosity Measurements: Flow Meters- Head type, Area type (Rota meter), electromagnetic type, Positive displacement type, Density measurements – Strain Gauge load cell method – Buoyancy method. Units of Viscosity, Two float viscorator – Industrial consistency meter

- 1. Measurement Systems Applications and Design by Doeblin E.O., 4/e, McGraw Hill International, 1990.
- 2. Principles of Industrial Instrumentation Patranabis D. TMH. End edition 1997

REFERENCE BOOKS:

- 1. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- 2. Instrument Transducers An Introduction to their Performance and design by Herman K.P. Neubrat, Oxford University Press.
- 3. Measurement system: Applications and Design by E.O. Doeblin, McGraw Hill Publications.
- 4. Electronic Instrumentation by H.S. Kalsi.